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Near-critical binary mixtures containing ionic solutes near a charged wall preferentially adsorbing one
component of the solvent are studied. Within the Landau-Ginzburg approach extended to include electrostatic
interactions and the chemical preference of ions for one component of the solvent, we obtain a simple form for
the leading-order correction to the Debye-Hückel theory result for the charge density profile. Our result shows
that critical adsorption influences significantly distribution of ions near the wall. This effect may have impor-
tant implications for the screening of electrostatic interactions between charged surfaces immersed in binary
near-critical solvents.
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I. INTRODUCTION

A phenomenon of critical adsorption occurs when a fluid
is brought to its bulk critical point in the presence of an
attractive substrate or wall, for example, along the critical
isochore. The wall causes a perturbation of the relevant order
parameter profile to extend over a distance ��b, the bulk
correlation length, from the surface �1,2�. Close to criticality,
where �b���T−Tc� /Tc�−� �� is the critical exponent�, the in-
fluence of the wall extends to macroscopic distances. As a
result the amount adsorbed �adsorption �� diverges as �
= �T−Tc� /Tc→0. Here we focus on the equivalent phenom-
enon that occurs for binary liquid mixtures near their conso-
lute points. In these systems, generically there is a preferen-
tial adsorption of one component of the mixture on the wall
surfaces, resulting in the divergence of the relative adsorp-
tion near the critical point.

Critical adsorption was much studied both theoretically
and experimentally. Of interest has been the scaling predic-
tion by Fisher and de Gennes �3� that � should have a power
law dependence on �, with a universal exponent which does
not depend on the details of the specific system. Also, this
phenomenon is of significant practical importance, e.g., for
the use of supercritical fluids in micro- and nanofluidics �4�
and as solvents in colloidal suspensions �5�.

In colloidal suspensions one usually encounters the pres-
ence of ions. This may be due to the dissociation of a salt-
free solvent, e.g., in binary solvents containing water, or due
to dissolved salt. Ions influence the electrostatic interactions
between the charged colloids leading to screening effects �6�.
If there is a chemical preference of ions for one component
of the solvent, then larger amount of ions may be dissolved
in regions where the concentration of the preferred compo-
nent of the solvent is larger. For this reason critical adsorp-
tion in binary solvents may affect the distribution of ions
near charged surfaces. This effect in turn may influence the
screening of electrostatic interactions between charged col-
loidal particles. Such a scenario is relevant for an experimen-
tal system used recently to investigate the effective forces
acting on spherical particles close to a substrate immersed in
a near-critical water-lutidine mixture �7,8�. The aim of that

study was to measure directly a critical Casimir force be-
tween a single spherical colloid and a flat surface. Polysty-
rene particles with high surface-charge density were used as
colloids, and silica glass treated chemically to achieve the
desired adsorption properties, which also carried some sur-
face charge, was used as the substrate. Ions in solution were
present due to dissociation in the salt-free water-lutidine
mixture. In order to extract the critical Casimir force from
the measured potentials of interactions, the distances z from
the substrate for which the electrostatic contribution was es-
timated to be negligible have been considered. The estima-
tion of the electrostatic interactions was based on measure-
ments of the electrostatic potential far from the critical point.
However, different solubilities of ions in water and lutidine
and the enhancement of one of components of the near-
critical mixture close to the surfaces might result in a change
in the screening of the electrostatic interaction compared to
the case of a noncritical homogeneous medium. Unfortu-
nately, possible effects of the critical adsorption on the elec-
trostatic contribution to the interaction potential could not be
estimated due to the lack of any theoretical predictions for
such effects. Motivated by these issues in the present paper
we study critical adsorption in a simple generic system, i.e.,
for a binary mixture solvent containing ionic solutes in the
presence of a single charged planar wall that preferentially
adsorbs one component of the solvent.

Recently, the properties of bulk near-critical binary mix-
tures with ions have been studied theoretically using a modi-
fied Poisson-Boltzmann theory by Onuki and Kitamura �9�.
The Landau-Ginzburg functional was used to describe the
binary solvent. The presence of ions was accounted for by
including electrostatic contribution and the terms due to the
entropy of ions. Preferential solvation effects were modeled
by a linear coupling between the density of ions and the
order parameter of near-critical binary mixture. Using this
phenomenological functional in the mean-field approxima-
tion, the authors found that the presence of ions shifts the
critical point of demixing. This result is consistent with the
well known experimental observations that adding salt to the
binary mixture solvent changes the position of its phase
separation curve, such that the upper and lower critical
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points are shifted upward �10,11� and downward �12�, re-
spectively.

If the ion-containing mixtures are exposed to external
electric fields, e.g., due to charged walls or charged macro-
molecules immersed in the solution, the phase separation
temperature is also shifted �13�. In addition to the preferen-
tial solvation, a dielectric inhomogeneity is important for this
effect; the high permittivity solvent component is attracted to
the charged surface thus enhancing the phase separation. Re-
cently, the effects of these, so called, dielectrophoretic forces
and of the preferential solvation have been studied for ion-
containing mixtures confined between two-charged surfaces
in a single phase region away from the coexistence �14�. The
approach used for a bulk system in Ref. �9� have been modi-
fied to account for a spatial variation in the volume fractions
and, consequently, of the dielectric permittivity of the binary
mixture. In addition, a surface term describing the interac-
tions between the charged solutes and confining charged sur-
faces has been included. Using a mean-field approximation
the density profiles and osmotic pressure between charged
interfaces have been calculated.

In order to investigate the influence of critical adsorption
of ion-containing binary mixtures on the distribution of ions
near a single charged wall, we propose here an approach that
starts from the microscopic theory. Within such an approach
the Landau functional is derived rather than postulated, and
it should describe correctly all the collective phenomena in
the system that are consistent with the assumed interaction
potentials. Hence, we can control all the assumptions on the
fundamental level of interactions. In Sec. II A we introduce
the lattice-gas model of a four-component mixture describing
two species of the solvent and the positive and negative ions.
The generic for this model, short-ranged interactions be-
tween all the species and between the species and the surface
are assumed. From the lattice model we derive the con-
tinuum Landau-Ginzburg functional which is then supple-
mented by electrostatic bulk and surface contributions. Con-
trary to previous approaches all parameters of our functional
are expressed in terms of microscopic interactions. Our Lan-
dau functional is similar to the functionals in Refs. �9,14�,
but more terms are present, and all the approximations are
based on assumptions concerning types of interparticle inter-
actions. In Sec. II B we derive Euler-Lagrange �EL� equa-
tions that allow to calculate the density and charge profiles
on a mean-field level. Next, in Sec. III we solve the linear-
ized EL equations �Sec. III A� and calculate the leading-
order correction to them �Sec. III B� under the assumption of
weak interactions with the surface, small amount of ions and
weak surface charge. A discussion of our results is included.
The summary and outlook are given in Sec. IV.

II. DERIVATION OF THE LANDAU THEORY

A. Construction of the lattice model

Let us consider a two-component mixture approaching the
upper critical point of the demixing transition from the one-
phase side and investigate the effect of the presence of a
small amount of positively and negatively charged ionic sol-
utes. We are interested in such a system in contact with a

charged wall, such that the total charge of the system neu-
tralizes the charge at the wall. Let us first consider this sys-
tem with the ions replaced by the corresponding neutral mol-
ecules. The electrostatic contribution to the free energy will
be included in the next step.

The four-component mixture close to the demixing tran-
sition can be conveniently studied in the framework of the
lattice-gas model. We consider a simple cubic lattice �SC�
with the unit cell of the volume v0. Here we limit ourselves
to a mixture of molecules of similar sizes. The cell-
occupancy operators are ôi�x�=1 if the cell x is occupied by
the ith component and ôi�x�=0 otherwise. The two compo-
nents of the solvent are denoted by i=1,2, and two addi-
tional species that can be ionized to carry positive or nega-
tive charges are indicated by i=3,4, respectively. We restrict
ourselves to thermodynamic conditions corresponding to the
stability of a liquid, where total density fluctuations can be
neglected. The single-state occupancy and close-packing
lead to the constraint

�
i=1

4

ôi�x� = 1. �1�

We consider an open system with the Hamiltonian �the elec-
trostatic interactions are disregarded at this stage�

HSR��ôi�x��	 = ESR��ôi�x��	 − �1�
x

ô1�x� − �2�
x

ô2�x�

− �3�
x

�ô3�x� + ô4�x�� , �2�

where �= �kBT�−1, kB is the Boltzmann constant and T the
temperature. �i is the chemical potential of the species i. We
shall require charge neutrality for ionized species 3 and 4 in
the bulk, and assume �3=�4. For the short-range interaction
energy we make the standard nearest-neighbor �NN� ap-
proximation for all the species

ESR��ôi�x�	� = − �
x

�
n=1

3

ôi�x�Jijôj�x + ên� , �3�

where ên is the unit lattice vector in the nth direction and
summation convention is used for i , j=1, . . . ,4. The coupling
constants are symmetric, Jij =Jji, and represent the sum of all
short-range interactions. We further assume that the species 3
and 4 are similar, i.e., interact in a similar way with the
solvent and with each other, such that we can take

J33 + J44 
 2J34,

J13 
 J14,

J23 
 J24. �4�

With this assumption the Hamiltonian takes the form
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HSR�ŝ,�̂2� = − �
x�V

�
n=1

3

�ŝ�x�Jssŝ�x + en� + �̂2�x�J���̂2�x + en�

+ ŝ�x�Js��̂
2�x + en� + �̂2�x�Js�ŝ�x + en��

− �
x�V

�	�ŝ�x� + 	�c�̂
2�x��

− �
x��V

�hsŝ�x� + h��̂
2�x�� . �5�

The system volume is denoted by V, �V denotes the bound-
ary layer. The operators ŝ, �̂, and �̂2 are defined as

ŝ = ô1 − ô2 = − 1,0,1,

�̂ = ô3 − ô4 = − 1,0,1,

�̂2 = ô3 + ô4 = 0,1. �6�

From close packing �Eq. �1�� it follows that ô1+ ô2= ŝ2=1
− �̂2. The coupling constants in Eq. �5� are linear combina-
tions of the coupling constants Jij, and 	� and 	�c are lin-
ear combinations of �i. Note that the SR contribution to the
energy depends only on �̂2 when the assumptions �4� are
valid; otherwise the full expression consisting of terms linear
in �̂ has to be considered. We assume Jss
J��, so that the
system can phase separate into two phases, one of them rich
in the first- and the other one rich in the second component
of the solvent, rather than into a phase rich in the third com-
ponent and a phase rich in the fourth component of the mix-
ture. The coupling Js��0 signals that ions preferentially dis-
solve in the first component of the solvent.

When the species 3 and 4 are charged, then Coulomb
interactions between them are present in addition to the
short-range interactions. In the truly microscopic model one
should take into account polarizability of the solvent, and the
problem becomes very difficult. In the semimicroscopic de-
scription the effect of polarizability of the solvent is included
only through the dielectric permittivity. The dielectric per-
mittivity depends on the composition and, in the case of
spatial inhomogeneities of the composition, the dielectric
permittivity is a functional of the solvent densities and de-
pends on x. The electrostatic energy-density ee in this case
has the form �9,15�

ee�s�x�,�c�x�,�̂�x�,��x�� = �−
�x�
8�

����2 + e�̂�x���x�� ,

�7�

where

s�x� = ŝ�x��, �c�x� = �̂2�x�� �8�

are the mean values of the microscopic operators, � is the
gradient and � is the electrostatic potential that in equilib-
rium corresponds to the minimum of the energy �Eq. �7��,
i.e., to generalization of the Poisson equation, considered for
example in Ref. �9�. Close to the demixing point of the bi-
nary mixture the densities vary on the length scale of the

bulk correlation length �b
v0
1/3, and their deviations from

the average value are small. It is then reasonable to assume
that �x� is a linear function of the average densities of the
two components of the solvent

�x� = 1�1�x� + 2�2�x� , �9�

where �1�x�= ô1�x��= �1 /2��1−�c�x�+s�x�� and �2�x�
= ô2�x��= �1 /2��1−�c�x�−s�x��. 1 and 2 are the dielectric
constants of the pure species 1 and 2, respectively. When the
electrostatic energy has the above form, the average densities
have to be determined self-consistently.

If one assumes, however, that �x� can be approximated
by its average value

�x� 
 ̄ , �10�

then the electrostatic energy �7� has the same form as in
vacuum �with the modified permittivity� and can be written
as a sum of interaction energies for all pairs of point charges,

EC��ôi�x�	� =
1

2�
x

�
x��x

�
i,j=3,4

eiôi�x�Vc��x − x���ejôj�x�� ,

�11�

where e3 and e4 are the charges, and Vc is the electrostatic
interaction potential, which has the form different for differ-
ent lattices and in the continuum space. The forms of Vc for
simple cubic, body centered, or face centered lattices in the
Fourier representation can be found, for example, in Refs.
�16,17�. If we assume for Vc the continuum-space form and
restrict the positions of ions to the lattice sites, then the elec-
trostatic energy takes the familiar form of the sum of Cou-
lomb interaction potential for all the pairs of ions

EC���̂�x�	� =
e2

2 �
x

�
x��x

�̂�x��̂�x��
̄�x − x��

. �12�

In the above expression we limit ourselves to monovalent
ions e3=−e4=e, with e denoting the elementary charge. With
the above form of the electrostatic energy we obtain a well-
defined semimicroscopic model with the probability distribu-
tion

p��ŝ,�̂	� =

exp�− �H��ŝ,�̂	���
x
�Kr�ŝ2 + �̂2 − 1�

�
, �13�

where H��ŝ , �̂	�=HSR��ŝ , �̂2	�+EC���̂	�. The grand potential
in the above statistical-mechanical model is given by

� = − kBT ln � . �14�

The advantage of such kind of modeling with the assumption
�10� is the possibility for investigating the effect of fluctua-
tions of the composition �for example by means of computer
simulations�, and the disadvantage is neglecting the coupling
between  �and hence the electrostatic energy of states �ôi	�
and the composition fluctuations. Which effect, the fluctua-
tions of the composition and their coupling to the density of
ions or the spatial variation in , plays the dominant role in
determining the charge distribution near the charged wall in a
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system exhibiting critical fluctuations of concentration, re-
mains an open question.

B. Mean-field approximation and continuous
Landau-type model

In the mean-field �MF� approximation the grand potential
is assumed to correspond to the minimum of the functional,

�MF�s,�c,�,�� = HSR�s,�c� + �
x�V

�ee�s,�c,�,��

+ kBTW�s,�c,��� , �15�

where the electrostatic energy density ee�s ,�c ,� ,�� is given
by Eq. �7�, and −kBW�s ,�c ,�� is the entropy density. In this
work we focus on the semi-infinite system, and assume the
lattice-gas form �ideal mixing entropy�

W�z� =
1 − �c�z� + s�z�

2
ln�1 − �c�z� + s�z�

2
�

+
1 − �c�z� − s�z�

2
ln�1 − �c�z� − s�z�

2
�

+
�c�z� + ��z�

2
ln��c�z� + ��z�

2
�

+
�c�z� − ��z�

2
ln��c�z� − ��z�

2
� , �16�

where we take into account the dependence of the fields on
the distance z from the planar wall.

We are interested in thermodynamic conditions corre-
sponding to stability of the uniform fluid close to the demix-
ing transition. The equilibrium values of s and �c in the bulk
are the uniform solutions of the Euler-Lagrange �EL� equa-
tions obtained from the minimization of the bulk part of the
functional �15�; they are denoted by s̄ and �̄c. From now on
we focus on the deviations from the equilibrium fields

��z� = s�z� − s̄ �17�

��z� = �c�z� − �̄c. �18�

On the MF level it is possible to take into account the
dependence of the dielectric constant on the composition and
we assume that  given by Eq. �9� depends on the distance z
from the planar wall according to

�z� = ̄ + ��z� , �19�

where

��x� = ���x� − ���x� , �20�

and we introduced the notation

� =
�1 − 2�

2
, �21�

� =
�1 + 2�

2
. �22�

For very small fields � and �, the second term in Eq. �19� is
negligible compared to the first one. We shall keep this term

in general formulas, valid for arbitrary deviations from bulk
equilibrium densities.

The continuum-space Landau-Ginzburg �LG� functional
for the fields ��z� and ��z� is defined as

AL��,�,�,�� =�MF�s̄ + �, �̄c + �,�,�� −�MF�s̄, �̄c,0,0� ,

�23�

where A is the area of the confining surface in the semi-
infinite geometry. L�� ,� ,� ,�� can be derived from the lat-
tice model in a standard way. For example, one can follow
the method described in detail in Ref. �18�. In short, in the
first step EL equations on the lattice are derived, which con-
tain contributions of the form �2f = f�z+1�+ f�z−1�−2f�z�
for f =s ,�c. For the boundary layer the effect of the missing
neighbors is taken into account, and in this way surface EL
equations are obtained. At the boundary layer both the bulk
and the surface EL equations must be satisfied, and the dif-
ference of the two equations gives the corresponding bound-
ary condition. From the continuous version of the EL equa-
tions ��2f →d2f /dz2� we derive the corresponding functional
with the appropriate surface term that leads to the boundary
conditions. We require that the boundary conditions contain
lower-order derivatives than the bulk equations. An alterna-
tive derivation is described in Appendix. The functional ob-
tained in this way has the form

L = �
0

�

dz�1

2
vT�z�C0v�z� +

1

2
v�T�z�Jv��z� + ee + kBTP�

+
vT�0�Jv�0�

2
− hv�0� + e���0� , �24�

where boldface capital letters denote matrices. The transpose
of the columnar vectors v and v� are vT�z�= ���z� ,��z�� and
v�T�z�= �d��z� /dz ,d��z� /dz� respectively. The elements of
the matrix C0= �Cij

0 �i,j=1,2, where indices 1 and 2 correspond
to s and �, respectively, are given by

Css
0 = kBT

1 − �̄c

�1 − �̄c�2 − s̄2 − 6Jss, �25�

C��
0 = kBT� 1 − �̄c

�1 − �̄c�2 − s̄2 +
1

�̄c
� − 6J��, �26�

Cs�
0 = C�s

0 = kBT
s̄

�1 − �̄c�2 − s̄2 − 6J�s. �27�

The second matrix in Eq. �24� is Jª �Jij�i,j=1,2, again with
indices 1 and 2 corresponding to s and �, respectively. The
electrostatic energy-density ee in the case of a fluctuating
dielectric constant has the form �7�. The linear surface fields

h= �h̄s , h̄�� are

h̄s = hs − Jsss̄ − Js��̄c, h̄� = h� − J���̄c − J�ss̄ , �28�

and P is obtained from the expansion of W about s= s̄ and
�c= �̄c with the linear and quadratic parts in the fields � and
� subtracted. The length unit is the lattice constant v0

1/3, com-
parable with the molecular diameter. The last term describes
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the electrostatic interaction with the uniformly charged sur-
face possessing the surface-charge density e�.

C. Spinodal surface and bulk correlation functions

In order to find the bulk correlation functions in the
Gaussian approximation as well as the spinodal surface and
the critical line of this model in MF, let us consider the
Gaussian part of the LG functional in the bulk. In the Fourier
representation we have,

LG =� dk

�2��3

1

2
ṽ��k�C̃�k�ṽ�k� , �29�

where ṽ��k�= ṽT�−k�, and

C̃�k� = C0 + k2J = J�J−1C0 + k2I� . �30�

The correlation functions for the fluctuations of the solvent
composition � and the density of ions � in the Fourier rep-

resentation are given by the matrix G̃= C̃−1. Each component
of this matrix is inversely proportional to det�J−1C0+k2I�
= ��1

2+k2���2
2+k2�, where �1

2 and �2
2 are the two eigenvalues

of the matrix

M = J−1C0 �31�

and are given by

�1,2
2 =

Tr M� ��Tr M�2 − 4 det M

2
. �32�

The correlations are thus given by a linear combination of
the two terms, ��1

2+k2�−1 and ��2
2+k2�−1. The asymptotic de-

cay of correlations in real space is described by the inverse
correlation length �b

−1=min��1 ,�2�.
The uniform phase is stable in the range of parameters T,

s̄, and �̄c such that det C̃�k��0 for all k�kmax, where kmax is
an upper cutoff on wave numbers �k��kmax=� /a. a is usu-
ally identified with some appropriate microscopic length,
e.g., the lattice spacing or the molecular diameter. Because

det C̃�k�=J det�M+k2I�=J��1
2+k2���2

2+k2� where

J = det J = JssJ�� − Js�
2 , �33�

for the instability analysis we have to distinguish cases of
positive and negative J.

If J�0, from the condition det C̃�0��0 �one-phase sta-
bility� we obtain after some algebra that Tr M�0 and
�1

2 ,�2
2�0. In that case the instability of the uniform phase

occurs at k=0 when

det C̃�0� = J det M = J�1
2�2

2 = 0 or C̃ss = 0. �34�

The condition C̃ss=0 determines the instability for the case
of the vanishing field � �the same concentration of ions in
the phase-separated solvent�. From Eq. �32� it follows that
�1

2→0+ so that the asymptotic inverse decay length is 1 /�b
=�1.

For J�0, on the other hand, the stability condition of

the uniform phase, det C̃�k��0, requires det�M+k2I�

= ��1
2+k2���2

2+k2��0 for all k�kmax. In particular, the uni-
form phase is stable against macroscopic phase separation as
long as �1

2�2
2�0. The model can describe phase separation

into two uniform phases only when the boundary of stability
of the uniform phase is associated with k=0, i.e., when upon
decreasing temperature ��1

2+k2���2
2+k2� changes sign first at

k=0. In our case this means that �1
2�2

2� ��1
2+kmax

2 ���2
2

+kmax
2 �; the necessary condition for the above is �1

2+�2
2�0.

This condition can only be satisfied when Tr M�0, since in
this case �1

2�0 and �2
2→0+; hence, 1 /�b=�2. Our model

permits an instability at 0�k�kmax, which will lead to the
modulated phase, for a set of parameters satisfying J�0 and
Tr M�0, since in this case �1

2→0− and �2
2�0. We will not

consider such parameters in the current paper.
For a given composition, the spinodal surface Ts�s̄ , �̄c� is

determined by the higher temperature satisfying the condi-
tion �34�. The explicit relation between the temperature and
the composition of the mixture that satisfies the first condi-
tion in Eq. �34�, reads

�kBTs�2 + kBTs�12Js�s̄�̄c − 6Jss�1 − �̄c − s̄2� − 6J���̄c�1 − �̄c��

+ 36J�̄c��1 − �̄c�2 − s̄2� = 0 �35�

For �̄c=0 we have simply kBTc=6Jss and s̄c=0 in this model.
For a very small amount of ions the shift of the critical tem-
perature can be estimated from the derivative of Ts with re-
spect to �̄c at s̄= �̄c=0. The derivative at that point is

dTs

d�̄c

=
6�Js�

2 − Jss
2 �

Jss
, �36�

while the derivative at s̄= �̄c=0 of kBT satisfying C̃ss�0�=0 is
−6Jss. Hence, Eq. �35� describes the actual instability at least
for small amount of the solute. The critical temperature in-
creases upon addition of ions when Js�−Jss�0. Experimen-
tally addition of some salt leads to the increase of the tem-
perature of the upper critical point �10,11�. Thus, if we
require that this model describes the experimental situation
on the MF level, we should assume that Js�−Jss�0. This
condition, together with the earlier assumption Jss�J��,
leads to J�Jss

2 −Js�
2 �0. On the other hand, for J�0 the

critical point decreases upon addition of salt, which is not
consistent with the experimental observation. However, the
present study is limited to MF approximation, and the effect
of fluctuations on the critical point should be taken into ac-
count to draw definite conclusions. We shall consider both
cases, J�0 and J�0, bearing in mind that in the latter case
the parameters must satisfy the condition Tr M�0.

D. Euler-Lagrange equations in semi-infinite system

Our goal is to determine the shape of the ion number and
charge density profiles near the charged wall, therefore we
need to consider the Euler-Lagrange equations corresponding
to the minimum of the functional �24�.

From �L /���z�=0 we obtain

��z� = − �c�z�g�z� , �37�

where
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g�z� = tanh„�e��z�… . �38�

Note that −1�g�z��1. From the above we can obtain � as
a Taylor series in � and �, of odd orders in �. The charge
density can be eliminated by using Eq. �37�, and after some
algebra we obtain three EL equations for �, �, and g,

J��� + 6�� =
kBT

2
��J�� + J�s�ln�1 − �c + s�

+ �J�s − J���ln�1 − �c − s� − 2J�s ln��c�

− J�s ln�1 − g2�� − J��	�̄ + Js�	�̄c �39�

J��� + 6�� = −
kBT

2
��J�s + Jss�ln�1 − �c + s�

+ �Jss − J�s�ln�1 − �c − s� − 2Jss ln��c�

− Jss ln�1 − g2�� + Js�	�̄ − Jss	�̄c �40�

g��1 − g2�� + �� − ��� + 2gg�2� + �� − ���

+ g��1 − g2����� − ���� −
4�e2�c�1 − g2�2g

kBT
= 0

�41�

where

	�̄ = 	� + 6Jsss̄ + 6J�s�̄c = −
kBT

2
ln�1 − �̄c + s̄

1 − �̄c − s̄
� �42�

and

	�̄c = 	�c + 6J���̄c + 6J�ss̄ = −
kBT

2
ln� �̄c

2

�1 − �̄c�2 − s̄2� .

�43�

In the above equations we used the explicit lattice-gas ex-
pressions for the entropy �16�. Equations for 	�̄ and 	�̄c
follow from the bulk EL equations.

The boundary conditions of the EL equations for the func-
tional �24� are

̄ + ���0� − ���0�
4�

� ��z��z=0 = − e� �44�

and

�� − � = H�, �� − � = H�, �45�

where

H� =
h̄�J�s − h̄sJ��

J
= s̄ +

h�J�s − hsJ��
J

,

H� =
h̄sJ�s − h̄�Jss

J
= �̄c +

hsJ�s − h�Jss

J
. �46�

J is defined in Eq. �33�.
When = ̄, the third EL simplifies,

�1 − g�z�2�g��z�̄ + 2g�2g�z�̄ −
4�e2�c�z�g�z��1 − g�z�2�2

kBT
= 0

�47�

Alternatively, � could be eliminated, and three EL equations
for the fields �, � and � would be obtained.

III. APPROXIMATE SOLUTIONS OF THE EL EQUATIONS

The nonlinear EL Eqs. �39�–�45� can be solved numeri-
cally. Since in the critical region and for weak surface fields
and small � the magnitudes of the fields �, �, and � are
small, we can obtain approximate analytical solutions within
the perturbation method. Analytical solutions can give more
general insight, but in the future studies should be supple-
mented with numerical solutions for particular choices of
model parameters.

We postulate that the solutions of the EL equations can be
written in the form

f = �
n=1

N

f �n� �48�

where f =� ,� ,� ,�, f �n�=O��n�, and � is a small parameter.

A. Solution of the linearized EL equations

Let us first consider the linearized Eqs. �39�–�41�. For the
linearized equations we shall simplify the notation, ��1�

�� , ��1��� , ��1���. For the electrostatic part we obtain
the linearized equations of the well known form �the spatial
dependence of permittivity leads to nonlinear contributions
to the EL equations�

̄

4�

d2��z�
dz2 + e��z� = 0, �49�

e��z� +
kBT��z�
�̄c

= 0, �50�

which together give

��z�� = �2��z� , �51�

where

�2 =
4�e2�̄c

kBT̄
. �52�

Note that � is the inverse Debye length in units of the mo-
lecular size. Solution of Eq. �51� with the boundary condition
Eq. �44� has the well known form

��z� = − ��e−�z. �53�

The equations for �� ,�� are formally the same as in the
Landau theory for a mixture near the demixing critical point,
and can be written in the form

v� = Mv �54�

where the matrix M= �Mij� with the indices 1 and 2 corre-
sponding to s and � respectively, is defined in Eq. �31�, and
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the vector v is defined below Eq. �24�. In the semi-infinite
systems in the one-phase state ��z� ,��z�→0 for z→�, and
from the Ansatz,

� = t1 exp�− �1z� + t2 exp�− �2z� , �55�

� = n exp�− �1z� + n2 exp�− �2z� , �56�

we obtain

ti

ni
=
�i

2 − M22

M21
. �57�

For T→Tc we have 1 /�b→0 where 1 /�b=�1 or 1 /�b=�2 for
J�0 or J�0 respectively �see Sec. II C�, and the Eqs. �55�
take the form

��z� � t1 exp�− z/�b� , �58�

��z� � n exp�− z/�b� . �59�

From the boundary conditions and Eq. �57� we obtain in this
case

n�T→Tc
−

�H�M11 − H�M21�
Tr M

+ ¯ , �60�

t1�T→Tc
− n

M22

M21
+ ¯ . �61�

Note that the linearized equations for � and �� ,�� are
decoupled. Thus, at the linear order there is no effect of the
concentration profile on the charge distribution. Similar re-
sult was obtained recently in Ref. �19�. Note, however that
we consider a simplified model of SR interactions, Eq. �5�,
where direct SR couplings between the charge and the con-
centration are disregarded.

B. Leading-order correction to the linearized EL equations

Beyond the linear order the coupling between the EL
equations leads to modifications of the charge and concen-
tration profiles. Note that the solution of the nonlinear equa-
tions can be written in the form �48� when all amplitudes of
the solutions of the linearized equations are small and of the
same order, ��=O���, ni=O��� and ti=O���. This means
large Debye screening length and small surface-charge den-
sity, as well as weak surface fields H� ,H� �see Eqs. �60� and
�61��. We shall limit ourselves to such conditions and calcu-
late the first correction ��2�, ��2�, ��2� to the solutions of the
linearized equations.

For the electrostatic part we obtain

��2� =
kBT

e�̄c
���
�̄c

− ��2�� �62�

and

− ���2��� + �2��2� + N��z� = 0, �63�

where

N��z� =
�2

4�e
�„����z� − ����z�…���z�

+ „���z� − ���z�…���z�� + „��z���z�…� �64�

where we introduced ��z�=��z� /�c=n1 exp�−z /�b�, with n1
=n1 /�c. Note that at the second order in the perturbation
expansion we need to calculate the function N� to the qua-
dratic order in �. The first term in Eq. �64� is of the order
O��2�2� �recall that we limit ourselves to boundary condi-
tions such that the fields � ,� ,� obtained from linearized
equations are all of the order of O����. The perturbation ex-
pansion �48� is justified when ��=O��� �see Eq. �53��, i.e.,
for small surface charge and/or weak screening. When the
additional condition, namely, �2�1 is satisfied �weak
screening�, the first term in Eq. �64� is negligible compared
to the second one. In this case of weak screening the position
dependence of the dielectric constant does not play a domi-
nant role for the leading-order correction to the solution of
the linearized EL equations, and we may assume = ̄. From
the forms of the fields � ,� ,� obtained from linearized equa-
tions we obtain the explicit expression for N��z�, and Eq.
�63� simplifies to

− ���2��� + �2��2� − ��e−�z��1/�b + ��2n1e−z/�b� = 0.

�65�

The solution is

��2��z� = A0e−�z + A�be−��+1/�b�z, �66�

where

A = −
��n1��b

−1 + ��2

��b
−1 + 2��

�67�

and A0 can be determined from the electroneutrality condi-
tion,

�
0

�

dz���1��z� + ��2��z�� + � = 0. �68�

The above condition is satisfied by the solution �53� of the
linearized equation, hence for the correction term we have
the condition �0

�dz��2��z�=0 that yields

A0 = − �
A�b

�� + �b
−1�

. �69�

In the critical region �b
−1→0, hence A�b→�. However,

��2��z� can be written in the following form:

��2��z� = A0e−�z +
��n1��b

−1 + ��2

��b
−1 + 2��

e−�z �1 − e−z/�b�
�b

−1 , �70�

where

A0 = − ��
n1�1 + �b��

1 + 2�b�
. �71�

Thus, ��2��z� is regular for �b
−1→0. However, coupling be-

tween the concentration and the charge fluctuations in the
functional �24� leads to the correction term in �70� which is
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nonmonotonic as a function of z. The ratio between the cor-
rection and the leading-order term has the form

��2��z�
��1��z�



n1�1 + �b��

1 + 2�b�
R�z� , �72�

where

R�z� = 1 − �1 + �b���1 − e−z/�b� = R�z�,�b��

= 1 − �1 + �b���1 − e−z�/�b�� �73�

is independent of the amplitude n1, and as a function of
dimensionless distance z�=�z depends only on the ratio be-
tween the relevant length scales, �b�. The nonmonotonic cor-
rection to the linear solution of the EL equations assumes an
extremum at �compare Eq. �73��

�zextr = 2��b ln���b + 1

��b
� . �74�

From Eq. �72� it follows that the correction term changes its
sign at z0=zextr /2. This is illustrated in Figs. 1 and 2 for the
case when the Debye screening length �−1 is equal to the

correlation length �b. The critical adsorption for z�z0 leads
to the charge density larger than that predicted by the
Debye-Hückel theory for n1�0, whereas for z�z0 the
charge density is smaller �see Fig. 1�. Since �0

�dz��z�=−�,
the enhanced charge density near the surface must lead to the
depleted density away from the surface compared to the so-
lution of the linearized equation. Thus, as a result of the
critical adsorption of the component that is preferred by the
ions, the screening length is effectively shorter. On the other
hand, for n1�0 the charge density is smaller than that pre-
dicted by the Debye-Hückel theory at distances z�z0,
whereas for z�z0 the charge density is larger �see Fig. 2�. In
this case the screening length is effectively larger than pre-
dicted by the Debye-Hückel theory. The effect is propor-
tional to the amplitude n1 of the deviation of the density of
ions from the bulk value, �c�z� / �̄c−1
n1 exp�−z /�b�. Plots
correspond to �n1�=0.5.

To further illustrate this trend we note that the charge
profile can be written in the scaling form

��z� = − ��e−z�
��z�;��b,n1� , �75�

where ��z� ;��b ,n1� is the scaling function, and we show in
Fig. 3 the profiles for different values of ��b and for n1
=0.5. For smaller values of the product ��b the profile is
much enhanced near the surface, i.e., for z��0.2, but decays
quickly with the scaled distance z� from the surface, whereas
for larger values of ��b the profile is less enhanced at the
surface but decays slower with z� for distances z��1. More
generally, from Eqs. �72� and �73� it follows that the value at
the surface, ��0�, changes from ��0�=−���1+n1� for ��b
→0 to ��0�=−���1+n1 /2� for ��b→�. For fixed z� 1
�not shown in Fig. 3 for clarity�, the absolute value of the
charge density decreases for increasing ��b.

Let us consider the nonmonotonic correction term for the
two limiting cases, ��b�1 and ��b
1 in more detail. For
���b

−1, i.e., away from the critical point, from Eq. �72� it
follows that it has a simple exponential form with the ampli-
tude equal to the amplitude n1,

0 50 100 150 200 250
z

-0.006

-0.004

-0.002

0
φ

FIG. 1. �Color online� Charge density profiles in the semi-
infinite system. The dashed line is the solution of the linearized Eq.
�53�, ��1��z�, the dash-dotted line is the correction term �72�,
��2��z�, and the solid line is the sum of the two functions, ��1��z�
+��2��z�, for �=0.01, �=0.5, �b=100, and n1=0.5. The charge den-
sity is in e /v0 units, where e is the elementary charge, and z is in
v0

1/3 units, where v0 is the volume per molecule in the close-packed
system and we assume that all molecules are of similar size.
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FIG. 2. �Color online� The same as in Fig. 1 but for n1=−0.5.
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b
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FIG. 3. �Color online� Charge density profiles as a function of
the scaled distance z�=�z for several values of the variable ��b as
indicated in the plot. The dotted line is the solution of the linearized
Eq. �53�, ��1��z�. Here, ��=0.05 and n1=0.5. The curve for ��b

=100 coincides with the curve for ��b=10.
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��2��z�/��1��z� 
 n1e−z/�b � � �b
−1. �76�

In this case the correction term is negligible for experimen-
tally relevant distances z����b, as shown in Fig. 3 for ��b
�0.1.

For T→Tc we have �b
−1→0, and using �b

−1�� we obtain
the approximation

��2��z�/��1��z� �
n1

2
�1 − ��b�1 − e−z/�b�� � 
 �b

−1.

�77�

For z��b the above takes the simple form

��2��z�/��1��z� �
n1

2
�1 − �z� . �78�

The correction term changes sign for �z0
1, i.e., for suffi-
ciently large correlation length the range of enhanced charge
density in reduced units is independent of �b.

It is instructive to examine the rescaled ratio R between
the leading-order correction and the Debye-Hückel approxi-
mation which is independent of the surface parameters n1
and � but displays the interplay between two length scales
�−1 and �b in determining the strength of the correction term.
R is shown in Fig. 4 as a function of the scaled distance z�

=�z for three different values of the product ��b. For �z
���b we observe a linear decay of R in agreement with Eq.
�78�, whereas for �z���b an exponential decay to the value
−��b, at which R stabilizes for �z
��b, is observed.

Equations for the first corrections to the nonelectrostatic
part read

�v�2��� = Mv�2� + D , �79�

where v�2�= ���2� ,��2��, and the components of the vector
DT= �Ds ,D�� are

Ds =
D��

a �2 + D��
a �� + D��

a �2 + D��
a �2

J
, �80�

D� =
D��

b �2 + D��
b �� + D��

b �2 + D��
b �2

J
. �81�

As follows from Eq. �79� the correction terms to the com-
position profile ��z� of the mixture are of the order of e−2z/�b

and e−2�z. Note that the effect of the charges on the profiles
of the composition of the mixture is negligible in the critical
region, where �
�b

−1.

IV. SUMMARY AND OUTLOOK

Starting from the lattice-gas model of a four-component
mixture we have derived the continuum Landau-Ginzburg
model for binary mixture solvents in the presence of ions
near the critical point of the demixing transition. The model
encompasses the composition of the binary solvent field �,
the density of ions field � and the charge density field �. It
takes into account electrostatic interactions and the preferen-
tial solvation. The coupling constants appearing in this ex-
tended Landau-Ginzburg theory are given explicitly in terms
of thermodynamic quantities, the temperature, the mean
composition of solvent, the mean density of ions, and the
interaction parameters Jij characterizing the lattice-gas model
of a mixture. We have assumed that ions are of similar
chemical nature.

The main difference between our functional and the func-
tional studied in Ref. �9� is the presence of the term !�2 and
terms !����2 and !���� in Eq. �24�, which result from
short-range interaction potentials. These terms lead to the
mixing of the fields � and � in the critical order parameter.
In the semi-infinite system these terms are important for the
form of the profile of the field �, and through the coupling of
� with the charge density � in the entropy term, they influ-
ence the charge profile ��z�. In our approach, direct cou-
plings between the charge and the concentration are disre-
garded, but such coupling would be present in the case of
ions of different chemical nature.

Mean-field theory for our Landau-Ginzburg model yields
the shift of the critical point of the demixing transition with
respect to the case of binary solvents without ions. The di-
rection of the shift depends on the relative strength of the
ions-solvent and solvent-solvent interaction parameters Js�
and Jss, and is positive for Js��Jss. The linearized EL equa-
tions in the presence of a charged wall do not lead to the
effect of the concentration profiles on the charge distribution.
We treat nonlinear effects using a perturbation expansion,
which gives the simple expression for the leading correction
to the solution of the linearized EL Eqs. �72� and �73�. The
ratio between the next-to-leading and leading terms is pro-
portional to the amplitude n1 of the decay of the ion density,
�=n1 exp�−z /�b�, and otherwise depends only on the domi-
nant lengths in the system, the bulk correlation length �b and
the Debye screening length 1 /�. We find that due to the
critical adsorption of that component of the solvent in which
the ions are preferentially dissolved, the amount of counteri-
ons in the layer near the charged surface of the thickness of
the Debye screening length is increased with respect to the
one away from the critical point. Critical adsorption of the
better solvent enhances screening whereas the critical ad-

0 2 4 6 8 10
z*=κz
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-2

-1

0

1
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κξ
b
= 10
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b

= 1

κξ
b

= 0.1

FIG. 4. �Color online� The rescaled ratio R �Eq. �73�� between
the leading-order correction �72� and the Debye-Hückel form �53�
of the charge density profile as a function of the scaled distance
z�=�z for several choices of the product ���b� as indicated in the
plot.
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sorption of the poorer solvent leads to the opposite effect.
This approach is quantitatively valid provided the Debye
screening length is large, the surface-charge density is small,
and the surface fields are weak. We expect the same trend
beyond the approximate perturbation expansion solution.
This will be studied further by the numerical treatment of the
full EL equations.

We should note that our theory shows that the leading-
order correction to the Debye-Hückel form of the charge
profile is determined by the average dielectric constant, i.e.,
the spatial variation in the dielectric constant can be ne-
glected when ��1 �in units of inverse molecular size�.

Finally, the change in the charge distribution near the
charged surface occurring upon approaching the critical
point of the binary solvent, indicates that in the confining
geometries, i.e., for systems between two surfaces, the effec-
tive interactions between the confining surfaces will be al-
tered. Our predictions will be tested in the future work by
explicit calculations and by comparison with the experimen-
tal data of Ref. �7�.
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APPENDIX: DERIVATION OF THE CONTINUUM
FUNCTIONAL

The grand potential on the lattice in the MF approxima-
tion �15� is given by the explicit expression

�MF = �
x�V

"b
MF�x� + �

x��V

"s
MF�x� �A1�

with

"b
MF�x� = − � Jss

2
s�x��6s�x� + �

n=1

3

�n
2s�x�� +

J��
2
�c�x�

#�6�c�x� + �
n=1

3

�n
2�c�x�� + Js�s�x��6�c�x�

+ �
n=1

3

�n
2�c�x�� + 	�s�x� + 	�c�c�x�� + ee�x�

+ kBTW�x� �A2�

and

"s
MF�x� = − hss�x� − h��c�x� + e���x� + Js�s�x���c�x�

− �3
−�c�x�� +

Jss

2
s�x��s�x� − �3

−s�x�� +
J��
2
�c�x�

#��c�x� − �3
−�c�x�� , �A3�

where ee is the electrostatic energy �Eq. �7��, −kBW�x� is the
entropy density �Eq. �16�� which in general depends on x,

and we introduced lattice difference operators

�n
−f�x� � f�x� − f�x − en� , �A4�

�n
+f�x� � f�x + en� − f�x� , �A5�

�n
2f�x� � �n

+f�x� − �n
−f�x� = f�x + en� + f�x − en� − 2f�x� ,

�A6�

where x= �x1 ,x2 ,x3�, e1= �1,0 ,0�, e2= �0,1 ,0�, and e3
= �0,0 ,1�. We assume that x��V when x= �x1 ,x2 ,0�, i.e., at
the boundary x3=0. The last three surface terms compensate
for the contribution from the missing neighbors at the surface
that are present in the bulk term of this form, therefore
should be subtracted.

For slowly varying functions we can approximate the
sums by the integrals, and also make the approximations
�n

−f�x�
�f�x� /�xn and �n
2f�x�
�2f�x� /�xn

2. Next, we can
integrate by parts the term s�x��n=1

3 �2s�x� /�xn
2, obtaining

−
Jss

2
�

−�

�

dx1�
−�

�

dx2�
0

�

dx3s�x��
n=1

3
�2s�x�
�xn

2 =

+
Jss

2
�

−�

�

dx1�
−�

�

dx2�
0

�

dx3�
n=1

3 � �s�x�
�xn

�2

−
Jss

2
�

−�

�

dx1�
−�

�

dx2s�x1,x2,0�� �s�x1,x2,x3�
�x3

�
x3=0

,

�A7�

with similar result for the two remaining contributions in Eq.
�A1� associated with inhomogeneous concentration. Note
that the surface terms containing derivatives in the con-
tinuum version of the functional �A1� cancel against the sur-
face terms that come from the integration by parts �see Eq.
�A7��. As a result we obtain for the semi-infinite system with
the boundary at x3=0,

�MF =� dR�
0

�

dz� Jss

2
�− 6s�x�2 + ��s�x��2	 +

J��
2

�− 6�c�x�2

+ ���c�x��2	 + J�s�− 6�c�x�s�x� + �s�x� · ��c�x��

+ ee�x� + W�x� − 	�s�x� − 	�c�c�x��
+� dR�− hss�R,0� − h��c�R,0� + e���R,0�

+ Js�s�R,0��c�R,0� +
Jss

2
s�R,0�2 +

J��
2
�c�R,0�2�

�A8�

where R= �x1 ,x2 ,0� and x3�z.
In the next step we consider the difference between the

grand potential in the presence of the confining wall, and the
grand potential in the bulk of the same volume. In the one-
phase region the bulk is characterized by �=�=0, s= s̄, and
�c= �̄c, which correspond to the minimum of the bulk part of
the grand potential, �MF�s̄ , �̄c ,0 ,0�=�dx"b

MF�s̄ , �̄c ,0 ,0�.

ALINA CIACH AND ANNA MACIOŁEK PHYSICAL REVIEW E 81, 041127 �2010�

041127-10



The excess grand potential 	�MF��+ s̄ ,�+ �̄c ,� ,��
=�MF�s ,�c ,� ,��−�dx"b

MF�s̄ , �̄c ,0 ,0� takes the form

	�MF =� dR�
0

�

dz� Jss

2
�− 6��x�2 + ����x��2�

+
J��
2

�− 6��x�2 + ����x��2�

+ J�s�− 6��x���x� + ���x� · ���x�� + ee�x�

+ kBTP1�x�� +� dR�− h̄s��R,0� − h̄���R,0�

+ e���R,0� +
Jss

2
��R,0�2

+
J��
2
��R,0�2 + Js���R,0���R,0��

+� dR�− hss̄ − h��̄c +
Jss

2
s̄2 +

J��
2
�̄c

2 + Js�s̄�̄c� .

�A9�

The surface fields h̄s and h̄� are given in Eq. �28�, P1 is equal
to W�x� with the terms linear in the fields � and � sub-
tracted. Since in the bulk �MF assumes minimum for vanish-
ing fields �, �, �, and �, the bulk part of 	�MF contains
terms of second and higher order in these fields. The last five
terms represent the constant contribution and can be ne-
glected since they play no role for the shape of the fields �,
� and �. Finally, when the fields depend only on the distance
form the wall z, Eq. �A9� simplifies to the form �24�.
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